Как научить школьника решать любую банковскую задачу

Обновлено: 02.05.2024

В последние годы большую социальную значимость имеет финансовая и экономическая грамотность молодёжи. Имеено поэтому одной из особенностей ЕГЭ по математике профильного уровня с 2015 года является влючение практико-оринтированной задачи. на мастер-классе рассмотрены 4 основных типа задач на проценты.

ВложениеРазмер
master-klass.docx 887.5 КБ

Предварительный просмотр:

МКОУ «Калиновская средняя общеобразовательная школа»

Хомутовского района Курской области

Региональная «Неделя математики - 2017»

19 октября 2017 года

Целевая аудитория : педагоги школ района, области.

Материалы и оборудование : ноутбук, проектор, презентация, тексты задач.

  1. Актуальность обучения решению задач экономического содержания.
  2. Критерии оценивания задачи №17.
  3. Метод математического моделирования.
  4. Классификация банковских задач.
  5. Решение типовых задач (практическая работа).

Именно поэтому одной из особенностей вариантов ЕГЭ по математике профильного уровня с 2015 году является включение практико-ориентированной задачи. Эта задача направлена на применение методов математики при решении содержательных и прикладных задач, в том числе социально-экономического содержания. У учащихся при этом проверяется умение выполнять действия с целыми числами, действий со степенями с натуральным показателем, знаний и умений обращаться с процентами, в том числе и сложными «банковскими» процентами.

Использование задач на проценты раньше также практиковалось в проведении итоговой аттестации. Их достаточно часто включали в варианты как школьных выпускных экзаменов, так и вступительных экзаменов в различные вузы страны. И вот по истечении многих лет задачи на проценты вновь входят в состав заданий ЕГЭ по математике.

Сегодня я остановлюсь на вопросах методики обучения учащихся умению решать задачи с социально-экономическим содержанием при подготовке к ЕГЭ по математике, а именно - решению банковских задач. Выбор темы выпал не случайно, поскольку, на мой взгляд, такие задачи чаще встречаются на экзаменах, к тому же я сама имею образование по специальности «финансы и кредит».

В первую очередь знакомимся с критериями оценивания задачи №17.

Обоснованно получен верный ответ

Верно построена математическая модель,

решение сведено к исследованию этой модели

и получен результат:

— неверный ответ из-за вычислительной ошибки;

— верный ответ, но решение недостаточно обосновано

Верно построена математическая модель,

решение сведено к исследованию этой модели,

при этом решение может быть не завершено

Решение не соответствует ни одному из критериев,

При обучении решению задач с социально экономическим содержанием передо мной стояла методическая задача – обучить учащихся использованию математического моделирования». Необходимо учащимся подчеркнуть, что процесс решения задачи представляет собой такую систему преобразований условий задачи, при которых достигается требуемое искомое.

Метод математического моделирования содержит следующие этапы:

1) построение математической модели объекта (явления, процесса);

2)исследование полученной модели, т.е. решение полученной математической задачи средствами математики;

3) интерпретация полученного решения с точки зрения исходной ситуации.

Среди задач с социально-экономическим содержанием важное место занимают так называемые «банковские задачи», так как при ее решении можно столкнуться с различными банковскими операциями (вкладами, ссудами). Такие задачи вызывают у учащихся большие трудности. Это объясняется тем, что в учебниках по математике не рассматриваются такие понятия, как простые и сложные проценты, и не вводятся формулы их вычисления. Предполагается, что учащиеся должны решать эти задачи, опираясь не на формулы, а на понимание понятия процента и умения решать основные три вида задач на проценты.

Итак, для начала выводим основную формулу.

Вспомним, как увеличить число на некоторое количество a%: А (1 + ).

Если этот процесс повторяется, то А (1 + ) n .

Итак, пусть А- сумма кредита, а %- процент по кредиту, р=1 + это коэффициент, на который умножается остаток долга или коэффициент приращения, S – ежегодная выплата (транш) банку.

Остаток банку через 1 год: Ар- S.

Остаток банку через 2 года: (Ар- S)р – S= Ар 2 – S (p+1).

Остаток банку через 3 года: (Ар 2 - Sр-S)р – S= Ар 3 – S (p 2 +p+1).

Остаток банку через 4 года: Ар 4 – S (p 3 + p 2 +p+1)= Ар 4 – S (p+1)(p 2 +1).

Остаток банку через n лет: Ар n – S (p n-1 + p n- 2 +…+ p+1)= Ар n – S , где (p n-1 + p n- 2 +…+ p+1) можно преобразовать по формуле суммы геометрической прогрессии: b 1 =1, q=p.

Задание 15 Профильного ЕГЭ по математике — «экономическая» задача. Речь, как вы уже поняли, речь пойдет о деньгах. О кредитах и вкладах. О ситуациях, где нужно узнать, при каких значениях переменной будет максимальна прибыль или минимальны издержки. С 2022 года задание 15 оценивается на ЕГЭ в 2 первичных балла.

В этой статье:

Как научиться решать «экономические» задачи. С чего начать,

Две схемы решения задач на кредиты и как их распознать,

В чем основная сложность «экономической задачи»,

Задания на оптимальный выбор. В том числе — с применением производной.

Если материал покажется вам сложным — вернитесь к теме «Задачи на проценты» из первой части ЕГЭ по математике.

Надеемся, что вы уже сейчас сможете ответить на такие вопросы:

  1. Что принимается за 100%?
  2. Величина х увеличилась на p%. Как это записать?
  3. Величина y дважды уменьшилась на р%. Как это записать?

Ответы на вопросы, а также подготовительные задачи — в статье «Задача 17 Профильного ЕГЭ по математике. Кредиты и вклады. Начисление процентов». Повторите эту тему.

Запомним, что есть всего две схемы решения задач на кредиты

Первая схема: кредит погашается равными платежами. Или известна информация о платежах. Подробно здесь.

Вторая схема: равномерно уменьшается сумма долга. Или дана информация об изменении суммы долга Подробно здесь.

Посмотрите, чем эти схемы отличаются друг от друга. На какие ключевые слова в условии надо обратить внимание.

Потому что первое, что надо сделать, когда решаете «экономическую» задачу на кредиты или вклады, — определить, к какому типу она относится.

1. 31 декабря 2014 года Аристарх взял в банке 6 902 000 рублей в кредит под 12,5% годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 12,5%), затем Аристарх переводит в банк X рублей. Какой должна быть сумма X, чтобы Аристарх выплатил долг четырьмя равными платежами (то есть за четыре года)?

Конечно, это задача первого типа. Есть информация о платежах. В условии сказано, что Аристарх выплатит долг четырьмя равными платежами.

тыс. рублей - сумма долга. Расчеты будем вести в тысячах рублей.

- коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,

— сумма ежегодного платежа.

Составим схему погашения кредита. Заметим, что здесь 4 раза (то есть в течение 4 лет) повторяются одни и те же действия:

- сумма долга увеличивается в раз,

- Аристарх вносит на счет сумму в счет погашения кредита, и сумма долга уменьшается на . Вот что получается:

Что у нас в скобках? Да, это геометрическая прогрессия, и ее проще записать как

. В этой прогрессии первый член равен 1, а каждый следующий в k раз больше предыдущего, то есть знаменатель прогрессии равен k.

Применим формулу суммы геометрической прогрессии:

И выразим из этой формулы .

Что же, можно подставить численные данные. Стараемся, чтобы наши вычисления были максимально простыми. Поменьше столбиков! Например, коэффициент k лучше записать не в виде десятичной дроби 1,125 — а в виде обыкновенной дроби , Иначе у вас будет 12 знаков после запятой!

И конечно, не спешить возводить эту дробь в четвертую степень или умножать на S = 6902000 рублей.

Ответ: 2296350 рублей

Вот следующая задача.

2. Жанна взяла в банке в кредит 1,8 млн рублей на срок 24 месяца. По договору Жанна должна возвращать банку часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 1 %, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна вернёт банку в течение первого года кредитования?

В этой задаче сумма долга уменьшается равномерно — задача второго типа.

Пусть S — первоначальная сумма долга, S = 1800 тысяч рублей.

Нарисуем схему начисления процентов и выплат. И заметим некоторые закономерности.


Сумма долга уменьшается равномерно. Можно сказать — равными ступеньками. И каждая ступенька равна После первой выплаты сумма долга равна после второй

Тогда первая выплата Вторая выплата,

Последняя в году выплата

Сумма всех выплат в течение первого года:

В первой «скобке» — сумма 12 членов арифметической прогрессии, в которой Обозначим эту сумму

Во второй скобке — также сумма 12 членов арифметической прогрессии, в которой Эту сумму обозначим

Общая сумма выплат за год:

Ответ: 1066500 рублей.

Еще одна задача — комбинированная. Здесь мы рисуем такую же схему выплаты кредита, как в задачах второго типа.

3. В июле 2016 года планируется взять кредит в банке на пять лет в размереSтыс. рублей. Условия его возврата таковы:

− каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;

− с февраля по июнь каждого года необходимо выплатить часть долга;

− в июле 2017,2018 и 2019 долг остаётся равным S тыс. рублей;

− выплаты в 2020 и 2021 годах равны по 625 тыс. рублей;

− к июлю 2021 долг будет выплачен полностью.

Найдите общую сумму выплат за пять лет.

Введем переменные: тысяч рублей. Рисуем схему погашения кредита:


Общая сумма выплат: Кроме того, долг был полностью погашен последней выплатой .

Это значит, что и тогда

Но не только задачи на кредиты и вклады могут встретиться в задании 17 Профильного ЕГЭ по математике. Есть еще задачи на оптимальный выбор. Например, нужно найти максимальную прибыль (при соблюдении каких-либо дополнительных условий), или минимальные затраты. Сначала в такой задаче нужно понять, как одна из величин зависит от другой (или других). Другими словами, нужна та функция, наибольшее или наименьшее значение которой мы ищем. А затем — найти это наибольшее или наименьшее значение. Иногда — с помощью производной. А если повезет и функция получится линейная или квадратичная — можно просто воспользоваться свойствами этих функций.

4. Консервный завод выпускает фруктовые компоты в двух видах тары—стеклянной и жестяной. Производственные мощности завода позволяют выпускать в день 90 центнеров компотов в стеклянной таре или 80 центнеров в жестяной таре. Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции в каждом из видов тары должно быть выпущено не менее 20 центнеров. В таблице приведены себестоимость и отпускная цена завода за 1 центнер продукции для обоих видов тары.

Вид тары Себестоимость, 1 центнера
Отпускная цена, 1 центнера
стеклянная 1500 руб 2100 руб
жестяная 1100 руб 1750 руб

Предполагая, что вся продукция завода находит спрос (реализуется без остатка), найдите максимально возможную прибыль завода за один день (прибылью называется разница между отпускной стоимостью всей продукции и её себестоимостью).

По условию, завод не может выпускать компот только в стеклянных банках или только в жестяных — должны быть и те, и другие.

Пусть x — доля мощностей завода, занятых под поизводство компотов в стеклянных банках, а y — доля мощностей, занятых под производство компттов в жестяных банках, Тогда x+y=1. (Например, х=0,3 и у = 0,7 — то есть 30% производства — это компот в стеклянных банках, а 70% - компот в жестяных банках.

Если бы завод выпускал только компот в стеклянных банках, их бы получилось 90 центнеров в сутки. Однако выпускаются и те, и другие, и компотов в стеклянных банках производится 90x центнеров, а в жестяных банках - 80y центнеров в сутки.

Вид тары Доля в общем количестве Производится в сутки Прибыль за 1 центнер
стеклянная 2100 - 1500 = 600 руб
жестяная 1750 - 1100 = 650 руб

Общая прибыль завода за сутки равна

По условию, и , то есть и

Нужно найти наибольшее значение выражения при выполнении следующих условий:

Подставим в выражение для прибыли завода за сутки. Получим, что она равна Это линейная функция от x. Она монотонно возрастает и свое наибольшее значение принимает при Тогда и максимально возможная прибыль завода за день равна

Ответ: 53500 руб.

Больше задач по финансовой математике на нахождение наибольших и наименьших значений функций и применение производной - здесь:

Вот такая она, задача с экономическим содержанием. Мы рассказали о ней самое главное. Если готов осваивать ее самостоятельно — желаем удачи. А если не все будет сразу получаться — приходи к нам в ЕГЭ-Студию на интенсивы, курсы или Онлайн-курс.

В 2018 году на ЕГЭ по математике появились задачи, напугавшие многих выпускников. «Это страшно, - говорили они после экзамена. - Никогда такого не было. Решить невозможно».

Конечно же, я сочувствую абитуриентам, для которых ЕГЭ – все-таки большой стресс. Экзамен – это испытание не только знаний, но и хладнокровия, и способности действовать в сложной ситуации. И может быть, сказать себе: «Да, задача необычная, но я знаю общий подход к решению таких задач – справлюсь и на этот раз».

Действительно ли настолько страшны были «банковские» задачи на ЕГЭ по математике 2018 года? Они своеобразны. Их невозможно решить без подготовки, без знания того, как вообще устроены задачи ЕГЭ на кредиты.

Запомним: есть всего два характерных типа «банковских» задач, или задач на кредиты.

1 тип. Выплаты кредита производятся равными платежами . Эта схема еще называется «аннуитет». К первому типу относятся также все задачи, где известны платежи (или дана закономерность именно для платежей ).

2 тип. Выплаты кредита подбираются так, что сумма долга уменьшается равномерно . Это так называемая «схема с дифференцированными платежами». Ко второму типу относятся также задачи, где известна закономерность уменьшения суммы долга .

О двух схемах решения задач на кредиты – мой краткий теоретический материал.

Более подробно я рассказываю теорию и решаю такие задачи на своих мастер-классах и интенсивах. Чтобы узнать о них, подпишись на нашу рассылку.

Посмотрим с этой точки зрения на «банковские» задачи ЕГЭ-2018.

15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?

Прежде всего, введем переменные. Расчеты будем вести в тысячах рублей.

Пусть S – сумма, которую планируется взять в кредит,

Z – общая сумма выплат, Z = 1604 (тыс. рублей).

Х - ежемесячное уменьшение суммы долга, Х = 30 (тысяч рублей),

p=3% - процент, начисляемый банком ежемесячно. После первого начисления процентов сумма долга равна После каждого начисления процентов сумма долга увеличивается в раза. В нашей задаче k = 1,03.

Определим, к какому типу относится задача. Долг уменьшается равномерно (по условию, 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца). Значит, это задача второго типа. А в задачах второго типа мы рисуем следующую схему:


После первого начисления процентов сумма долга равна kS. Затем, после первой выплаты, сумма долга равна S – X, где Х = 30 (тысяч рублей).

Значит, первая выплата равна kS – (S – X) (смотри схему).

Вторая выплата: k (S – X ) – ( S – 2X).

Последняя выплата: k ( S – 20 X).

Найдем общую сумму выплат Z.
Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – 20X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X).

Мы сгруппировали слагаемые, содержащие множитель k, и те, в которых нет k.

Упростим выражения в скобках:
k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) = Z.

В задачах этого типа (когда сумма долга уменьшается равномерно) применяется формула для суммы арифметической прогрессии:

В этой задаче мы тоже ее используем.

k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1) = Z.

Осталось подставить числовые значения.

S ( 21⋅ 1,03 – 20) – 210 ⋅ 30 ⋅ 0,03 = 1604.

Отсюда S = 1100 тысяч рублей = 1 100 000 рублей.

Следующая задача относится к тому же типу. Математическая модель та же самая. Только найти нужно другую величину – процент, начисляемый банком. К тому же количество месяцев, на которое взят кредит, неизвестно.

15-го декабря планируется взять кредит в банке на 1 000 000 рублей на (n+1) месяц. Условия его возврата таковы:
—1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.

Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.

S = 1000000 рублей = 1000 (тыс. рублей) – сумма кредита,

Х = 40 (тыс. рублей) – ежемесячное уменьшение суммы долга,

Z = 1378 (тыс. рублей) – общая сумма выплат,

- коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов.

Рисуем уже знакомую схему погашения кредита.


Первая выплата: kS – (S – X).

Вторая выплата: k (S – X ) – ( S – 2X).

Последняя выплата: k ( S – n X).

По условию, 15-го числа n-го месяца долг составит 200 тысяч рублей.

Значит, S – nX = 200. Подставим числовые данные:

1000 – 40 n = 200; тогда n = 20, n + 1 = 21, то есть кредит был взят на 21 месяц. Очень удобно – количество месяцев в этой задаче оказалось таким же, как в предыдущей. Поэтому очень кратко повторим основные моменты решения

Общая сумма выплат Z:

Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X) =
= k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) =
= k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1).

Мы снова использовали ту же формулу для суммы арифметической прогрессии:

По условию, Z = 1378 (тыс. рублей).

Выразим k из формулы S (21k – 20) – 210 X (k-1) = Z:

Подставим данные из условия задачи.

Третья задача из числа «кошмаров» ЕГЭ-2018 по математике. Та же схема!

3.

15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 20-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.

Тоже задача второго типа – есть информация об уменьшении суммы долга. Точно также будем вести расчеты в тысячах рублей.

Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.

S = 300 (тыс. рублей) – сумма кредита,

n = 21 – количество месяцев,

Х – ежемесячное уменьшение суммы долга,

Z – общая сумма выплат.

Рисуем ту же схему, что и в предыдущей задаче. По условию, 15-го числа 20-го месяца долг составит 100 тысяч рублей.

Значит, S – 20 X = 100. Подставив данные из условия, найдем, что Х = 10.

Точно так же считаем сумму выплат (смотри задачи 1 и 2).

Z = S (21k – 20) – 210 X (k-1).

Подставляем данные из условия: Z = 300 (21 ⋅ 1,02 – 20) – 210 ⋅ 10 ⋅ 0,02 = 384 (тыс. рублей).

Ответ: 384000 рублей.

Хочешь узнать решения всех сложных задач ЕГЭ? Подпишись на нашу рассылку.

В 2021 году на ЕГЭ по математике «экономические» задачи №17 оказались однотипными. Не было оптимизации. Только кредиты, причем везде – схема с дифференцированными платежами. И кажется, что уже нечего придумать по этой теме – но составители заданий ЕГЭ постарались и придумали!

Подробно о том, какими бывают «экономические» задачи на ЕГЭ, читайте здесь.

Вообще-то было понятно, что в задаче 17 должно появиться что-то новое. Не принципиально новое, конечно, а какие-то вариации на тему дифференцированных платежей.

О том, что такое схема погашения кредита с дифференцированными платежами, читайте здесь.

Мы разберем 3 задачи реального ЕГЭ-2021, а потом мою авторскую задачу, предложенную в ЕГЭ-Студии накануне экзамена на Математических тренингах. Чем-то они похожи.

В июле 2022 года планируется взять кредит на 600 тыс. рублей. Условия его возврата таковы:
- в январе 2023. 2024 и 2025 годов долг возрастает на 20% по сравнению с концом предыдущего года:
- в январе 2026. 2027 и 2028 годов долг возрастает на r% по сравнению с концом предыдущего года;
- в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года:
- к июлю 2028 года долг должен быть полностью погашен.
Чему равно r, если общая сумма выплат составит 984 тыс. рублей?

Составим схему погашения кредита.

Пусть – коэффициент, показывающий, во сколько раз увеличивается сумма долга после начисления процентов в 2023, 2024 и 2025 годах,

– аналогичный коэффициент для 2026, 2027, 2028 годов.

B = 984 тыс. руб. – общая сумма выплат. Сумма долга уменьшается равномерно, т.е. на


Год
2023
2024
2025
2026
2027
2028

Общая сумма выплат:

2. Вторая задача похожа на первую.

В июле 2025 года планируется взять кредит на 600 тыс. рублей. Условия его возврата таковы:
- в январе 2026, 2027, 2028, 2029 и 2030 годов долг возрастает на 13% по сравнению с концом предыдущего года;
- в январе 2031, 2032, 2033, 2034, 2035 годов долг возрастает на 12% по сравнению с концом предыдущего года;
- в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
- к июлю 2035 года долг должен быть полностью погашен.
Чему равна сумма всех выплат?

тыс. рублей, лет, - коэффициент, показывающий, во сколько раз увеличивается сумма долга в 2026-2030 годах.

- аналогичный коэффициент для 2031-2035 годов. Долг уменьшается равномерно, т.е. ежегодно на

Составим схему погашения кредита:


Общая сумма выплат:

Ответ: 1020 тыс. рублей.

3. Третья задача похожа на «Кошмар-2018». Вы знаете, как это было в 2018 году. Все знали, что «экономическая» задача – это халява. Многие абитуриенты рассчитывали решить Часть 1 и задания 13, 15 и 17 – и получить 80 баллов, а с ними поступать куда угодно. Это было бы удобно: без изучения планиметрии и стереометрии, без «параметров» и задач на числа и их свойства – в общем, почти без усилий.

И вот на экзамене – вместо элементарной задачки – появилась задача такого типа. Надежды абитуриентов на легкое поступление растаяли, как лед на июньском солнце.

Подробно о «Кошмаре-2018» здесь.

К 2021 году чудовище приручили, и теперь оно не кажется страшным. Вот точно такая же задача из ЕГЭ-2021. Ну и что?

В середине января 2026 года планируется взять кредит на 1200 тыс. рублей. Условия его возврата таковы:

- Первого числа каждого месяца кредит увеличивается на 1%.

- Со 2 по 15 числа каждого месяца, на протяжении следующих 30 месяцев, долг должен уменьшаться на одну и ту же величину но сравнению с предыдущим месяцем.

- На тридцать первый месяц, перед начислением процентов, остаток кредита будет составлять 300 тысяч, после чего он погашается одним платежом.

Чему равна общая сумма выплат?

X – величина, на которую уменьшается сумма долга с первого по 30-й месяцы.

тыс. рублей – сумма долга на 31-й месяц.

Составим схему погашения кредита.


тыс. рублей, тыс. рублей.

Общая сумма выплат:

Мы нашли суммы арифметических прогрессий:

Общая сумма выплат:

Ответ: 1429 500 рублей

А теперь – авторская задача Анны Малковой. Кто решил ее за день до ЕГЭ – тот на реальном экзамене знал, что делать.

4. В 2015 году Федор взял в кредит сумму S на 6 лет под 25% годовых, причем вначале банк начисляет проценты, затем Федор переводит в банк определенную сумму денег. По условиям кредита, в 2016, 2017, 2018 и 2019 годах после очередной выплаты сумма долга ежегодно уменьшается на 1/10 первоначальной величины, выплаты 2020 и 2021 годов равны. Всего Федор выплатил 250 тысяч рублей. Найдите S.

Составим схему погашения кредита в 2016-2019 годах.


Первые 4 выплаты:

Сумма выплат за 4 года:

Пусть выплаты 2020 и 2021 годов равны X;

Выплаты за 2020 и 2021 годы:

5. (Резервный день) 15 декабря 2024 года планируется взять кредит в банке на 31 месяц. Условия его возврата таковы:
‐ 1‐го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
‐ с 2‐го по 14‐е число каждого месяца необходимо выплатить часть долга;
‐ 15‐го числа каждого месяца с 1‐го по 30‐й (с января 2025 года по июнь 2027 года включительно)
долг должен быть на одну и ту же сумму меньше долга на 15‐е число предыдущего месяца;
‐ 15 июня 2027 года долг составит 100 тысяч рублей;
‐ 15 июля 2027 года кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 555 тысяч рублей?

Обозначим S - сумму кредита, n = 31 месяц, p = 2%, x - сумма, на которую уменьшается долг с 1-го и по 30-й месяц; составим схему погашения кредита.


Общая сумма выплат B = 555 тыс. рублей.

Общая сумма выплат:

Найдем сумму арифметической прогрессии.

А вы готовы к таким задачам? Научиться их решать можно на нашем Онлайн-курсе подготовки к ЕГЭ на 100 баллов.

Описание материала: Предлагаю вам статью, в которой показаны способы решения экономических задач на кредиты. Описаны два вида кредита: с аннуитетным платежом и дифференцированным платежом. Данный материал будет полезен для учителей математики 10-11 классов при подготовке к ЕГЭ по математике профильного уровня (задача 17).

1. Аннуитетный платеж – представляет собой равные ежемесячные транши (платежи), растянутые на весь срок кредитования. В сумму транша включены: часть ссудной задолженности и начисленный процент. При этом, в первые месяцы (или годы) кредита большую часть транша составляют проценты, а меньшую – погашаемая часть основного долга. Ближе к концу кредитования пропорция меняется: большая часть транша идет на погашение «тела» кредита, меньшая – на проценты. При этом общий размер транша всегда остается одинаковым.
2. Дифференцированный платеж – представляет собой неравные ежемесячные транши, пропорционально уменьшающиеся в течение срока кредитования. Наибольшие платежи – в первой четверти срока, наименьшие – в четвертой четверти. «Срединные» платежи обычно сравнимы с аннуитетом. Ежемесячно тело кредита уменьшается на равную долю, процент же насчитывается на остаток задолженности. Поэтому сумма транша меняется от выплаты к выплате. Если в задаче присутствуют слова «равными платежами» или «долг уменьшается на одну и ту же величину», то речь идет о дифференцированном платеже.

Задача 1.
1 января 2015 года Александр Сергеевич взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая – 1-го числа каждого следующего месяца банк начисляет 1% на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Александр Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Александр Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 275 тыс. рублей?
Решение:


Ответ: 5 месяцев.

Задача 2.
31 декабря 2014 года Дмитрий взял в банке 4 290 000 рублей в кредит под 14,5 годовых. Схема выплаты кредита следующая – 31 декабря следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 14,5%), затем Дмитрий переводит в банк х рублей. Какой должна быть сумма х, чтобы Дмитрий выплатил долг двумя равными платежами (то есть за два года)?
Решение:
Дмитрий взял в банке кредит 4 290 000 рублей.



Дмитрий выплатил кредит за два года, поэтому сумма долга в конце второго года равна 0.
Получим уравнение:


При решении задач на кредиты с дифференцированным платежом начисляемые проценты за весь период кредитования можно вычислить с помощью формулы суммы n-первых членов арифметической прогрессии. И потом найти сумму общего платежа. Считаю, что этот метод будет прост и понятен для учащихся.

Задача 3
15 января планируется взять кредит в банке на сумму 2,4 млн. рублей на 24 месяца. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Какую сумму надо выплатить банку за первые 12 месяцев?
Решение:
Платёж за месяц состоит из величины ежемесячного долга (он равен 2400000:24=100000(р.)) и начисленных к остатку процентов. В каждый месяц долг уменьшается 100000р.
Сумма начисленных «процентов» за 12 месяцев (в млн. р.):



В скобках арифметическая прогрессия. Воспользовались формулой суммы n-первых членов арифметической прогрессии :


За 12 месяцев буде выплачена половина долга, то есть 1,2 млн р.
Значит за первые 12 месяцев банку нужно выплатить 1 200 000 + 666 000 = 1 866 000 р.
Ответ: 1 866 000 рублей.

Задача 4
15 января планируется взять кредит в банке на 5 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Сколько процентов от суммы кредита составляет общая сумма денег, которую нужно выплатить банку за весь срок кредитования?
Решение:
Пусть в банке взяли кредит S рублей. Платёж за месяц состоит из величины ежемесячного долга (он равен




Всего банку будет выплачено S + 0,03S = 1,03S. Значит общая сумма выплаченных денег от суммы кредита составляет 103%.
Ответ: 103%.

Задача 5
15 января планируется взять кредит в банке на сумму 2,4 млн рублей на 24 месяца. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Какую сумму нужно выплатить банку за последние 12 месяцев?
Решение:
Платёж за месяц состоит из величины ежемесячного долга (он равен 2400000:24=100000(р.)) и начисленных к остатку процентов. В каждый месяц долг уменьшается 100000р.
Сумма начисленных процентов за 12 последних месяцев (в млн):



За 12 месяцев буде выплачена половина долга, то есть 1,2 млн р.
Значит за последние 12 месяцев банку нужно выплатить 1 200 000 + 156 000 = 1 356 000 р.
Ответ: 1 356 000 рублей.

Задача 6
15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что восьмая выплата составила 99,2 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен




Значит за 15 месяцев должны заплатить долг – S рублей и ежемесячных процентов, начисленных к остатку:






Значит за весь срок кредитования будет выплачено 1 488 000 рублей.
Ответ: 1 488 000 рублей.

Задача 7
15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 15% больше, чем сумма взятая в кредит. Найдите r.
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен




Значит за 9 месяцев должны заплатить долг – S рублей плюс сумму процентов, начисленных к остаткам ежемесячно:


Значит кредит взят под 3% в месяц.
Ответ: 3%.

Задача 8
15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что восьмая выплата составила 108 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен




Значит за 15 месяцев должны заплатить долг – S рублей и ежемесячных процентов, начисленных к остатку:





Задача 9
15 января планируется взять кредит в банке на 18 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Сколько процентов от суммы кредита составляет общая сумма денег, которую нужно выплатить банку за весь период кредитования?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен




Значит за 18 месяцев должны заплатить долг – S рублей и сумму ежемесячных процентов, начисленных к остатку:


Значит сумма выплаченных банку денег составляет 119% от суммы долга.
Ответ: 119%.

Задача 10
15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что за первые 12 месяцев нужно выплатить банку 177,75 тыс. рублей. Какую сумму планируется взять в кредит?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен




Получим уравнение: 0,5925 S = 177750,
S = 300000
Значит в кредит взяли 300 000 рублей.
Ответ: 300 000 рублей.

Задача 11
15 января планируется взять кредит в банке на 25 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что я сумма денег, которую нужно выплатить банку за весь срок кредитования, на 39% больше, чем сумма, взятая в кредит. Найдите r.
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен




Значит за 25 месяцев должны заплатить долг –S рублей плюс сумму процентов, начисленных к остаткам ежемесячно:


Значит кредит взят под 3% в месяц.
Ответ: 3%.

Задача 12
15 января планируется взять кредит в банке на 24 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что за последние 12 месяцев нужно выплатить банку 1597,5 тысяч рублей. Какую сумму планируется взять в кредит?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен





Получим уравнение: 0,5325 S = 1597500; S = 3 00 000.
Значит планируется взять 3 000 000 рублей.
Ответ: 3 000 000 рублей.

Литература
И.В.Ященко. Математика. Профильный уровень. Типовые тестовые задания. Издательство «Экзамен», М. 2017.

Автор статьи

Куприянов Денис Юрьевич

Куприянов Денис Юрьевич

Юрист частного права

Страница автора

Читайте также: